

EtherCAT Motion Control Card

XPCIE1032H

Motion Controller

Motion Control Card

10 Expansion Module

HMI

Foreword

Zmotion[®]

The motion controller provides rich interface, and it has excellent motion control performance, which can meet the expansion requirements of various projects.

This manual is copyrighted by Shenzhen Technology Co., Ltd., without the written permission of the Zmotion Technology, no person shall reproduce, translate and copy any content in this manual. The above-mentioned actions will constitute an infringement of the copyright of the company's manual, and Zmotion will investigate legal responsibility according to law.

For details about the ZMC controller software and the introduction and routine of each command, please refer to the ZBASIC software manual.

Information contained in this manual is only for reference. Due to improvements in design and functions and other aspects, Zmotion Technology reserves the final interpretation! Subject to change without notice!

Pay attention to safety when debugging the machine!

Please be sure to design an effective safety protection device in the machine, and add an error handling program in the software, otherwise Zmotion has no obligation or responsibility for the loss caused.

In order to ensure the safe, normal and effective use of the product, please be sure to read this product manual carefully before installing and using the product.

Safety Statement

- This chapter describes the safety precautions required for the correct use of this product. Before
 using this product, please read the instructions for use and correctly understand the relevant
 information on safety precautions.
- This product should be used in an environment that meets the design specifications, otherwise
 it may cause equipment damage or personal injury, and malfunctions or component damage
 caused by failure to comply with relevant regulations are not within the scope of product quality
 assurance.
- Zmotion will not take any legal responsibility for personal safety accidents and property losses caused by failure to comply with the contents of this manual or illegal operation of products.

Safety Level Definition

According to the level, it can be divided into "Danger" and "Caution". Failure to operate as required may result in moderate injury, minor injury or equipment damage.

Please keep this guide in a safe place for reading when needed, and be sure to hand this manual to the end user.

Install

Danger

- When the controller is disassembled, all external power supplies used by the system should be disconnected before operation, otherwise it may cause misoperation or damage to the equipment.
- It is forbidden to use in the following places: places with dust, oil fume, conductive dust, corrosive gas and flammable gas; places exposed to high temperature, condensation, wind and rain; places with vibration and shock. Electric shock, fire and misuse can cause product damage and deterioration.

Notice

- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ After installation, ensure that there are no foreign objects on the hardware circuit board.
- When installing, make it tightly and firmly with the mounting frame.

• Improper installation of the controller may result in misoperation, failure and fire.

Wiring

The specifications and installation methods of the external wiring of the equipment shall comply with the requirements of local power distribution regulations.

- Danger
- When wiring, all external power supplies used by the system should be disconnected before operation.
- When powering on and running after the wiring work is completed, the terminals attached to the product must be installed.
- Cable terminals should be well insulated to ensure that the insulation distance between cables will not be reduced after the cables are installed on the terminal block.
- Avoid metal shavings and wire ends falling into the hardware circuit board during installation.
- ◆ The cable connection should be carried out correctly on the basis of confirming the type of the connected interface.

- Notice
- It should be confirmed that the cables pressed into the terminals are in good contact.
- Do not bundle the control wires and communication cables with the main circuit or power supply wires, etc., and the distance between the wires should be more than 100 mm, otherwise noise may cause malfunction.
- ◆ If the controller is not installed properly, it may cause electric shock or equipment failure or malfunction.

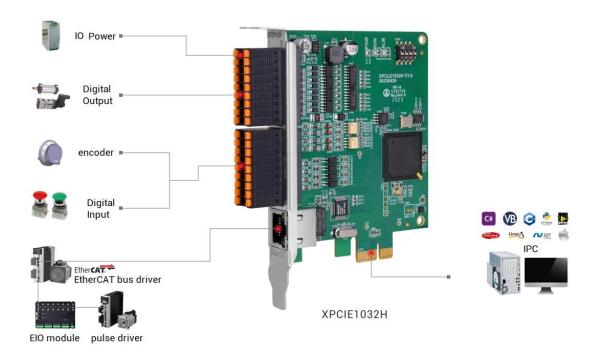
Content

Cha	pter	I Prod	uction Information	3
	1.1.	Pro	duction Introduction	3
	1.2.	Sys	tem Framework	3
	1.3.	Fun	octional Features	4
	1.4.	Мо	del & Nameplate	5
	1.5.	Мо	del Configuration	5
	1.6.	Cor	nnection Configuration	6
Cha	pter	II Prod	luct Specification	8
	2.1.	Bas	sic Specification	8
	2.2.	10 I	nterface Specification	9
Cha	pter	III Wiri	ng Communication Configuration & Network	10
	3.1.	Eth	erCAT Bus Interface	10
	3.2.	Dig	ital Inputs & Outputs	12
		3.2.1.	Terminal Definition	12
		3.2.2.	Digital Specification	14
		3.2.3.	General Input Wiring	15
		3.2.4.	General Output Wiring	16
		3.2.5.	Encoder Wiring	17
		3.2.6.	PWM Wiring	17
		3.2.7.	Pulse Wiring	18
	3.3.	Wh	ole Wiring Reference	19
Cha	pter	IV Exp	ansion Module	20
	4.1.	Eth	erCAT Bus Expansion Wiring	20
	4.2.	Eth	erCAT Bus Expansion Resource Mapping	21
Cha	pter	V Insta	allation Requirements	24
	5 1	Inst	tallation Environment	24

5.2	. Instal	llation Size	25
5.3	. Insta	llment Method	25
5.4	. Drive	Program Installation	26
		Unauthorized Version	
	5.4.2.	Authorized Version	29
	5.4.3.	Ordinary Network Card Install EtherCAT Bus Protocol	34
5.5	. Notes	3	37
Chapter	· VI Run a	and Maintain	39
6.1	. Regu	lar Inspection and Maintenance	39
6.2	. Comr	non Problems	40

Chapter I Production Information

1.1.Production Introduction

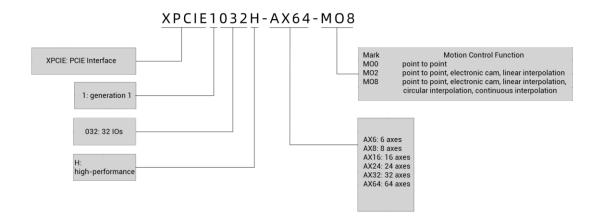

XPCIE1032H economical motion control card is a kind of EtherCAT bus and pulse type that is with PCIE interface. It supports up to 64 axes motion control, which can achieve linear interpolation, any circular interpolation, space arc, helical interpolation, electronic cam, electronic gear, synchronous follow, virtual axis, robot and all kinds of control requirements.

XPCIE series motion control card can be applied in high-speed and high-precision occasions, such as, semi-conductor equipment, SMT processing, 3C automation production line, new energy equipment, laser processing and non-standard automatic equipment.

1.2. System Framework

XPCIE motion control card is a kind of new type XPCIE bus motion control card. And multiple stepper motors or digital servo motors can be controlled. In addition, EtherCAT bus and ordinary pulse control are valid. What's more, it supports many functions, multi-axis point to point, interpolation motion, trajectory planning, handwheel control, encoder position checking, IO control, position latch, etc.

XPCIE1032H card adaptation hardware custom configuration requires CPU benchmark i5-4 generation 4 cores or above, main frequency not lower than 2GHZ, running memory above 8G, hard disk above 256M.



1.3. Functional Features

- XPCIE1032H supports up to 64 axes motion control.
- Pulse output mode: single-ended direction / pulse.
- Support encoder position measurement, which can be configured as handwheel input mode.
- 512 isolated inputs and 512 outputs can be expanded through EtherCAT bus.
- The maximum output current of general digital outputs can reach 300mA, which can directly drive some kinds of solenoid valves.
- Support linear interpolation, arbitrary circular interpolation, helical interpolation and continuous interpolation.
- Support electronic cam, electronic gear, position latch, synchronous follow, virtual axis and other functions.
- Support pulse closed loop, pitch compensation and other functions.

- Support multi-file and multi-task programming in ZBasic.
- A variety of program encryption methods to protect the intellectual property rights of customers.

1.4. Model & Nameplate

1.5. Model Configuration

The description of the optional configuration of software functions is shown in the form below: including the selection of the number of axes, the selection of motion control functions, and the selection of other functions (PSO function, vision function, and manipulator function can be reselected).

Interface	Optional Functions	Definition Description
	Frame	R1: suit to ordinary robots
	Robot	R6: suit to 6-joint robots and special structure
License		robots.
	NcGcode	NC: suit to NC G code function.
Parameter	ZVision	ZV: suit to vision instruction and function.
	104	HW: suit to HW hardware comparison output
	HW	function, refer to high-speed output channel

		numbers selection.	
		Select according to actual axes, the value set of	
		axis needs to be larger than the number of axes	
		used.	
		AX4: 4 axes can be used at most.	
		AX6: 6 axes can be used at most.	
	Motor	AX8: 8 axes can be used at most.	
		AX16: 16 axes can be used at most.	
		AX24: 24 axes can be used at most.	
		AX32: 32 axes can be used at most.	
		AX64: 64 axes can be used at most.	
		Valid motion control functions:	
	Motion	MOO: point to point	
		MO2: point to point, electronic cam, linear	
		interpolation.	
		MO8: point to point, electronic cam, linear	
		interpolation, circular interpolation, continuous	
		interpolation.	

1.6. Connection Configuration

External equipment / software configuration:

- Main computer / industrial control computer, wired-mouse and keyboard.
- Displayer
- Win10 operating system professional edition, ZDevelop development platform and operating system software of various machine tool industries, etc.

(note: users can download the latest RTSys (ZDevelop) version from the official website of Zmotion or contact us. Users who use other upper computer development platforms can also contact us to obtain function library files. And this product does

not come with an operating system, and there is no built-in MotionRT software. Users need to go to the official website to download the MotionRT installation package)

Chapter II Product Specification

2.1.Basic Specification

Item	Description	
Model	XPCIE1032H	
Basic Axes	6/8/16/24/32/64 axes, configure according to actual needs.	
Basic Axes Type	EtherCAT/Local Pulse axes	
HW	16 outputs can be configured as HW function.	
PWM	4 outputs can be configured as PWM function.	
Into va al IO	16 inputs, 16 outputs (with overcurrent protection), and 8 are high-	
Internal IO	speed inputs, 16 are high-speed outputs.	
Max extended IO	512 inputs and 512 outputs.	
Pulse bit	64	
Encoder bit	64	
Speed accel bit	64	
Max pulse	E00kH-	
frequency	500kHz	
VR power failure	2049	
storage space	2048	
Power Supply	24V DC input	
Communication	EtherCAT	
interface		
Dimensions	90*106mm	
Work	-10°C ~ 55°C	
temperature	-10°C ~ 55°C	
Work humidity	10% ~ 95% (no condensation)	

PCIE doesn't support plug in and out when power on, please turn off the computer before plugging in and out the card. Please handle it carefully. Before touching the control card circuit or plugging in/out the control card, please wear anti-static gloves or touch an effectively grounded metal object to discharge the human body to prevent possible static electricity from damaging the motion control card.

2.2.10 Interface Specification

Item	Specification	Description	
Internal IO	16+16	16 inputs, 16 outputs (with overcurrent	
		protection)	
Max extended IO	512 inputs,	Match with expansion module to expand IO	
	512 outputs		
High-speed input	8	IN0-7, 8 are high-speed inputs	
High-speed output	16	OUT0-15, 16 are high-speed outputs	
Latch input	4	4 can be configured as latch input, IN0-3	
Single-ended encoder	2	Input is reused, IN0-2, IN4-6	
PWM output	4	4 can be configured as PWM, OUT0-3	
Hardware comparison	16	16 outputs can be configured as hardware	
output		comparison output (PSO function), and	
		precision output can be compatible, OUT0-3.	
Single-ended pulse	4	Output is reused, OUT8-15	
output			
IO power input	DC24V	24 DC input, IO needs to be supplied by	
		external power separately.	

Chapter III Wiring Communication

Configuration & Network

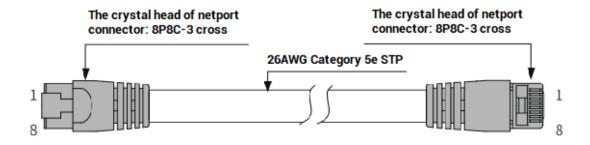
3.1. Ether CAT Bus Interface

XPCIE1032H motion controller has a 100M EtherCAT communication interface, and it supports EtherCAT protocol. In addition, EtherCAT driver or EtherCAT expansion module can be connected.

→ Interface Definition

ECAT	PIN	Name	Description
	1	TX+	Send signal (+)
-	2	TX-	Send signal (-)
	3	RX+	Receive signal (+)
	4	NC	Reserved
	5	NC	Reserved
	6	RX-	Receive signal (-)
∞	7	NC	Reserved
	8	NC	Reserved

$\rightarrow \textbf{Specification}$


Item	Specification	
Communication protocol	EtherCAT protocol	
Valid service	CoE(PDO, SDO), FoE	
Cynabranization mathad	IO adopts input and output synchronization / DC-	
Synchronization method	distributed clock	
Physical level	100BASE-TX	
Duplex mode	Full duplex	
Topology	linear topology	

Transfer media	Cable	
Transfer distance	It is less than 100M between 2 nodes	
Process data	Maximum 1486 bytes of one single frame	
Synchronization shaking	<1us	
of two slave stations		
Defrack	1000 digital input and output about is 30us, 16 servo	
Refresh	axes is about 100us	

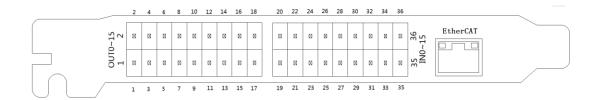
→ Communication Cable Requirements

Both ETHERNET communication interface and EtherCAT communication interface adopt standard Ethernet RJ45 interface.

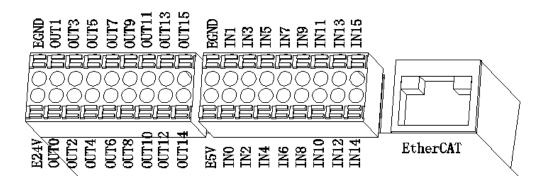
The network cable adopts Category 5e STP, and the crystal head has a metal shell to reduce interference and to prevent information from being eavesdropped. As shown below:

Item	Specification
Cable type	Flexible crossover cable, Category 5e
traverse	twisted pair
Line pairs	4
Isolation	cross skeleton
Connector	Crystal head with iron shell
Cable material	PVC
Cable length	Less than 100m

Use RJ45 network cable connection method:


- When installing, hold the crystal head that is with the cable and insert it into the RJ45 interface until it makes a "click" sound (kada).
- In order to ensure the stability of communication, please fix the cables with cable ties.

 When disassembling, press the tail mechanism of the crystal head, and pull out the connector and the module in a horizontal direction.


Please use tube-type pre-insulated terminals and cables with appropriate wire diameters to connect the user terminals.

3.2. Digital Inputs & Outputs

General IO includes 16 inputs and 16 outputs (all are NPN types), when the number is not enough, expansion is valid. For IO, it needs to connect to 24V DC power externally.

3.2.1. Terminal Definition

PIN	Signal	Description	Note
1	E24V	IO power 24V input	IO power terminal to supply
2	EGND	IO power ground / IO public end	power
3	OUT0	Output 0, PWM0	1. All outputs are high-
4	OUT1	Output 1, PWM1	speed outputs, default
5	OUT2	Output 2, PWM2	are general outputs.

6 OUT3 Output 3, PWM3 2. OUT0-3 ca 7 OUT4 Output 4 configured as 8 OUT5 Output 5 output or puls 9 OUT6 Output 6 through 10 OUT7 Output 7 (ZDevelop).	PWM
8 OUT5 Output 5 output or puls 9 OUT6 Output 6 through	e output
9 OUT6 Output 6 through	RTSvs
	·
11 OUT8 Output 8, single-ended DIR3 3. OUT0-15	support
	nparison
	orecision
14 OUT11 Output 11, single-ended PUL2 output.	
15 OUT12 Output 12, single-ended DIR1 4. OUT8-15 ca	ın be
16 OUT13 Output 13, single-ended PUL1 configured as	4 pulse
17 OUT14 Output 14, single-ended DIRO outputs.	
18 OUT15 Output 15, single-ended PUL0	
19 E5V E5V power output Supply power for 6	yternal
20 EGND E5V power ground / IO public end equipment	Atemai
21 INO Input 0, latch R0, encoder EA0 1. IN0-7 all are high	ih-eneed
22 IN1 Input 1, latch R1, encoder EB0 inputs, defau	,
23 IN2 Input 2, latch R2, encoder EZO general inputs.	iit aic
	nfigured
	J
25 IN4 Input 4, encoder EA1 as latch input	J
26 IN5 Input 5, encoder EB1 RTSys (ZDevelo	,
27 IN6 Input 6, encoder EZ1 3. IN0-2 and 4-6	
28 IN7 Input 7 inputs.	encoder
29 IN8 Input 8	
30 IN9 Input 9 IN8-15 are ordinar	
31 IN10 Input 10 which can connect	
32 IN11 Input 11 button, switch ar	a other
33 IN12 Input 12 elements.	

34	IN13	Input 13
35	IN14	Input 14
36	IN15	Input 15

Note:

- Only 24V encoders can be used. The maximum pulse frequency of encoder 0 and encoder 1 is 500kHz, which can be connected to high-speed encoders, the others are common inputs, the maximum pulse frequency is 10kHz, and it can only be connected to low-speed encoders such as handwheels.
- The No. after inputting pulse output and encoder input is default axis No., and it can be switched into ordinary IO through ATYPE command (ATYPE = 0 : ordinary IO, ATYPE = 1: pulse output, ATYPE = 3: encoder input, ATYPE = 4: pulse output + encoder input)

3.2.2. Digital Specification

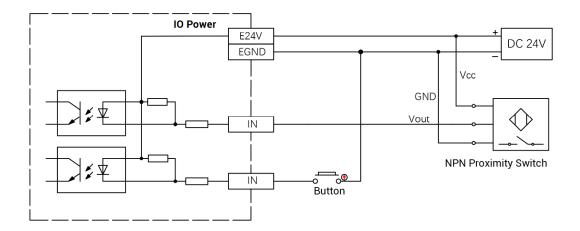
→ High-speed Digital Output Specification

ltem	High Speed Output	
Channel	16 (OUTO-OUT15)	
Output method	Transistor NPN type, OD outputs	
Output frequency	≤400kHz	
Voltage level	Load power ≤36V	
Max output current	+300mA	
Max leakage	25.14	
current when off	25μΑ	
Respond time to	1μs (resistive load typical value)	
conduct	τμο (resistive load typical value)	
Respond time to	2110	
close	3μs	
Isolation method	Capacitive isolation	
Overcurrent	Support, action current is 600mA	
protection	Support, action current is obtina	

Respond time	Below 0.5ms

Note:

- The times in the form are typical based on the resistive load, and may change when the load circuit changes.
- Due to the leak-type output, the shutdown of the output will be obviously affected by the external load circuit, and the output frequency should not be set too high in the application.

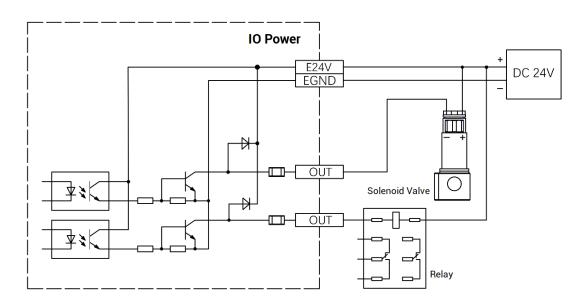

→ Digital Input Specification

ltem	High-Speed Input (IN0-7)	Low-Speed Input (IN8-15)
Input mode	NPN type	NPN type
Frequency	< 100kHz	< 5kHz
Voltage level	DC24V (-15%~+20%)	DC24V (-15%~+20%)
Current (typical value)	6.8mA	4.8mA
Minimal current	-2.3mA (negative)	-1.8mA (negative)
Max current	-7.5mA (negative)	-6mA (negative)
The voltage to open	<15V	<14.5V
The voltage to close	>15.1V	>14.7V
Impedance	3.3ΚΩ	4.7ΚΩ
Isolation method	Capacitive isolation	Capacitive isolation
Respond time	Below 10ms	Below 10ms

Note: the above parameters are standard values when the voltage of controller power supply (E+24V port) is 24V.

3.2.3. General Input Wiring

→ Wiring Reference

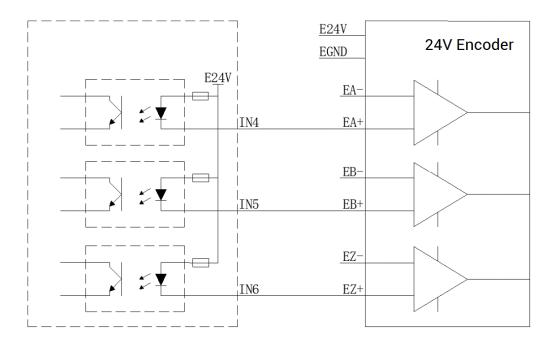


→ Wiring Note:

- The wiring principle of high-speed digital input IN (0-7) and low-speed digital input IN (8-15) is shown in the figure above. The external signal source can be an optocoupler, a key switch or a sensor, etc., all can be connected as long as the requirements on output of electric level can be achieved.
- For the public end, please connect the "EGND" port on the power supply to the "COM" terminal of the external input device.

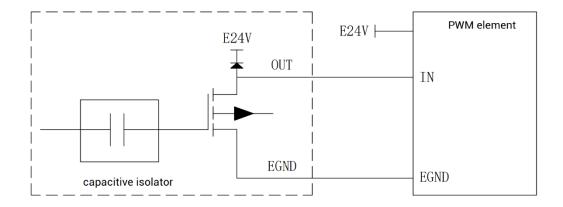
3.2.4. General Output Wiring

$\rightarrow \text{Wiring Reference}$


→ Wiring Note:

- The wiring principle of high-speed digital output OUT (0-15) is shown in the figure above. The external signal receiving end can be an optocoupler or a relay or solenoid valve, all can be connected as long as the input current does not exceed 300mA.
- For the connection of the public end, please connect the "EGND" port on the IO power supply to the negative pole of the DC power supply of the external input device.

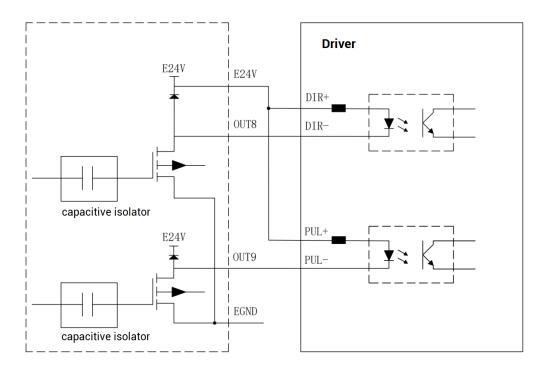
3.2.5. Encoder Wiring


There are 2 24V single-ended encoder inputs on board for XPCIE1032H.

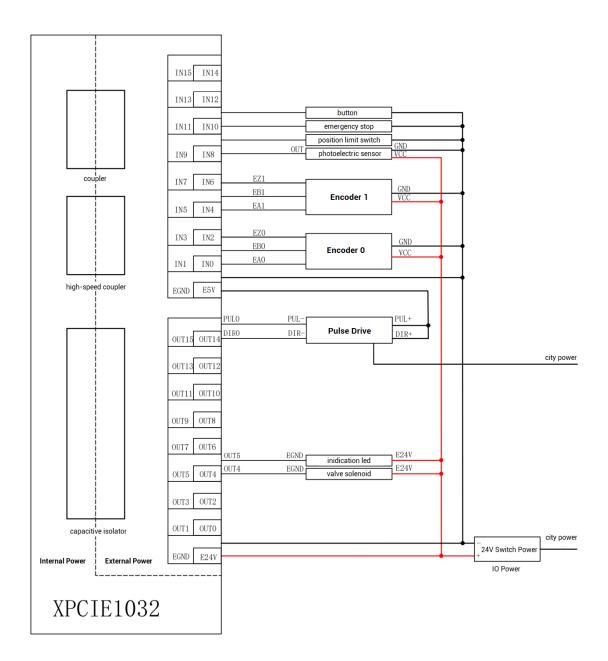
Here, use IN4-6 to connect to encoder, when wiring is done, IN can be used as encoder input signal through ATYPE (1) = 3. IN4 is EA1, IN5 is EB1, IN6 is EZ1, and corresponding encoder axis No. is 1.

3.2.6.PWM Wiring

Please use OUT that supports PWM function, OUT0~OUT3 can be selected.



3.2.7. Pulse Wiring


There are 4 single-ended pulse outputs on board for XPCIE1032H.

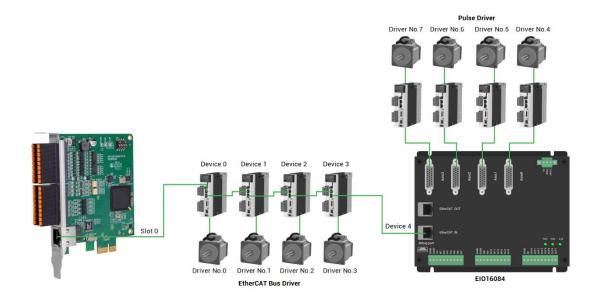
Here, use OUT8 and OUT9 to connect to driver, when wiring is done, when OUT8 and OUT9 are configured through ATYPE (3) = 1. OUT 8 is DIR3, OUT9 is PUL3, and corresponding pulse driver axis No. is 3.

E24V or E5V can be used according to specific driver.

3.3. Whole Wiring Reference

Chapter IV Expansion Module

The control card can expand digital IO, analog AD/DA, pulse axis and other resources through EtherCAT bus expansion module or ZMIO310-ECAT series vertical bus expansion module.


The EIO expansion modules and ZMIO310-ECAT are expansion modules used by the EtherCAT bus controller. For example, EIO series can expand the resources of digital IO and pulse axis. When the resources of the controller are insufficient, the EtherCAT bus controller can be connected to multiple EIO expansion modules for expansion, you can view the maximum number of IO expansion points and the maximum number of expansion axes of the controller, and in this way, it supports IO remote expansion.

4.1. EtherCAT Bus Expansion Wiring

After the expansion wiring is completed, each EIO expansion module does not need to develop again. It only needs to manually configure the unique IO address and axis address in the EtherCAT master controller, and it can be accessed after the configuration is completed.

The IO address number is set through the bus command NODE_IO, and the program on the controller can access the resources on the expansion module only through the IO number. The configuration of the axis address uses the AXIS_ADDRESS command to map axis number, and when the binding is completed, specify the axis number through the BASE or AXIS command.

When wiring, pay attention that EtherCAT IN is connected to the upper-level module, and EtherCAT OUT is connected to the lower-level module. The IN and OUT ports cannot be mixed.

Involved number concepts in above figure are as follows: the bus-related command parameters will use the following numbers:

Slot number (slot):

The slot number refers to the number of the bus interface on the controller, and the slot number of the EtherCAT bus is 0.

Device number (node):

The device number refers to the number of all devices connected to a slot. It starts from 0 and is automatically numbered according to the connection sequence of the devices on the bus. You can view the total number of devices connected to the bus through the NODE_COUNT(slot) command.

Drive number:

The controller will automatically identify the drive on the slot, and the number starts from 0, and the number is automatically numbered according to the connection sequence of the drive on the bus.

The drive number is different from the device number. Only the drive device number on the slot is assigned, and other devices are ignored. The drive number will be used when mapping the axis number.

4.2. EtherCAT Bus Expansion Resource Mapping

→ IO Mapping:

The program on the controller can access the resources on the expansion module only through the IO number. The IO number of the EtherCAT bus expansion module is set

through the bus command NODE_IO, and the input and output are configured at the same time.

When IO mapping, first check the maximum IO number of the controller itself (including the external IO interface and the interface in the pulse axis), and then use the command to set.

If the extended IO coincides with the IO number of the controller itself, the two will work at the same time, so the mapped number of the IO mapping must not be repeated in the entire control system.

IO mapping syntax:

NODE_IO(slot, node) = iobase

slot: slot number, 0-default

node: device number, starting from 0

iobase: mapping the IO start number, the setting result will only be a multiple of 8

Example:

NODE_IO(0,0)=32 'set the IO start number of slot 0 interface device 0 to 32

If device 0 is EIO16084, after configuration according to the above syntax, the IO numbers corresponding to input INO-15 are 32-47 in turn, and the IO numbers corresponding to OUT0-7 are 32-39 in turn.

→ AXIS Mapping:

Before using the axis of the expansion module, you need to use the AXIS_ADDRESS command to map the axis number, and the axis mapping also needs to pay attention to the axis number of the entire system cannot be repeated. The mapping syntax of the EIO series extended axis is the same as that of the bus driver.

Axis mapping syntax:

AXIS_ADDRESS(axis number)=(slot number << 16)+driver number+1

Example:

 $AXIS_ADDRESS(0)=(0<<16)+0+1$

'the first drive on the EtherCAT bus, drive number 0, bound as axis 0 $AXIS_ADDRESS(1)=(0<<16)+1+1$

'the second drive on the EtherCAT bus, drive number 1, bound as axis 1

If the first node is EIO16084, and EIO16084 is connected to drive, then driver 0 here is the first pulse driver connected to EIO16084, otherwise it is the EtherCAT driver.

Chapter V Installation Requirements

5.1.Installation Environment

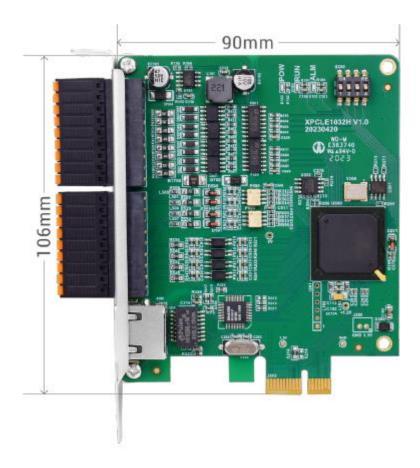
Environment temperature: the ambient temperature has a great impact on the life of the device, and the operating environment temperature of the device is not allowed to exceed the allowable temperature range (-10°C to 55°C).

Please install it in a place that is not easy to vibrate. Vibration should not be greater than 4.9m/s². Take special care to stay away from equipment such as punch presses.

Avoid placing in direct sunlight, humidity, and water drops.

Avoid installing in places with corrosive, flammable and explosive gases in the air.

Avoid installing in places with oil and dust, the pollution level of the installation place is PD2.


This product is installed in the cabinet and needs to be installed in the final system. The final system should provide corresponding fireproof enclosures, electrical protection enclosures, and mechanical protection enclosures, etc., in compliance with relevant IEC standards.

CPU heat dissipation should be considered when the chassis is fully enclosed and there is no air circulation.

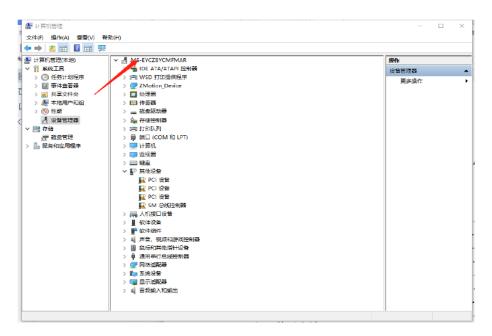
Item		Parameters
Work Temperature		-10℃-55℃
Work relative Humidity		10%-95% non-condensing
Storage	Temperature	-40°C ~ 70°C (not frozen)
Storage Humidity		Below 90%RH (no frost)
	Frequency	5-150Hz
vibration	Displacement	3.5mm(directly install)(<9Hz)
vibration	Acceleration	1g(directly install)(>9Hz)
	Direction	3 axial direction
Shock (collide)		15g, 11ms, half sinusoid, 3 axial direction

Degree of Protection	IP20	
----------------------	------	--

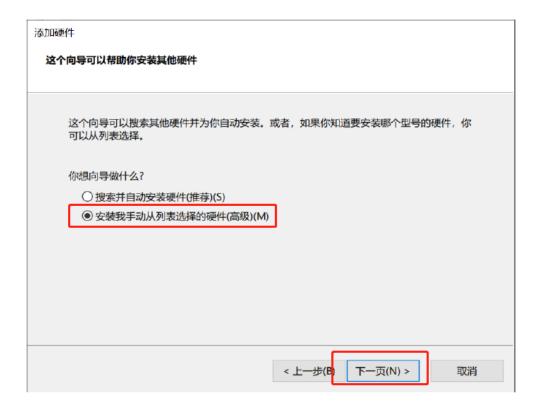
5.2. Installation Size

5.3. Installment Method

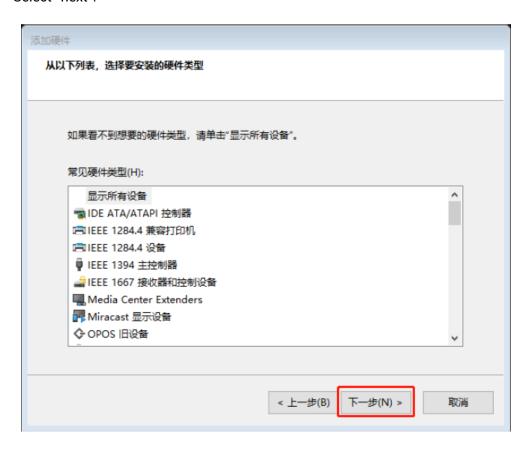
- 1. Turn off the power to the computer.
- 2. Open the computer case, select a free XPCIE card slot, and use a screwdriver to remove the corresponding baffle strip.
- 3. Insert the motion control card into the slot securely, and tighten the fixing screws on the baffle strip.
- 4. Remove a baffle bar adjacent to the slot, and fix the adapter board on the slot of the chassis with screws.


5.4.Drive Program Installation

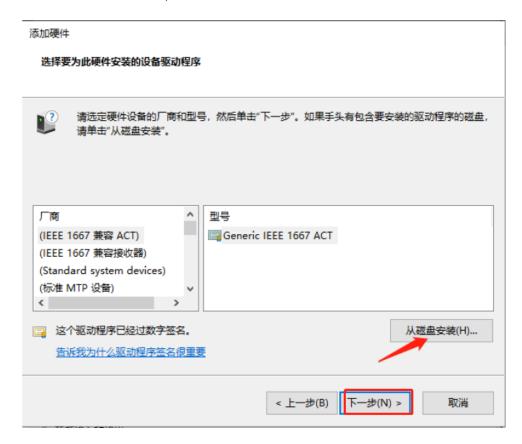
The driver of the test version is not signed, and it can be installed only after pressing F8 when Windows starts to disable the driver signature authentication. The signed version does not need to disable the signature.


5.4.1. Unauthorized Version

When there is no PCI card device, in the device manager, the menu: "Operation" - "Add Obsolete Hardware", if there is no "Operation", right click.


1. Find "Add Obsolete Hardware".

2. Select "Manual", click "next".

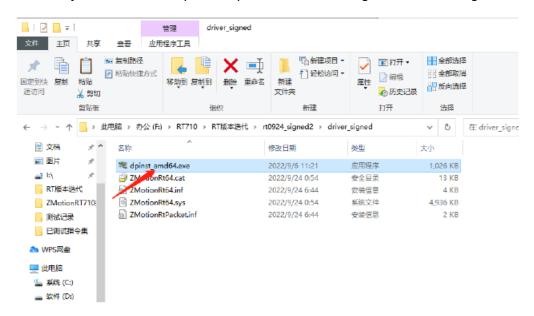


3. Select "next".

4. Choose to install from disk, (all options are default items, no need to choose

manufacturer and model)

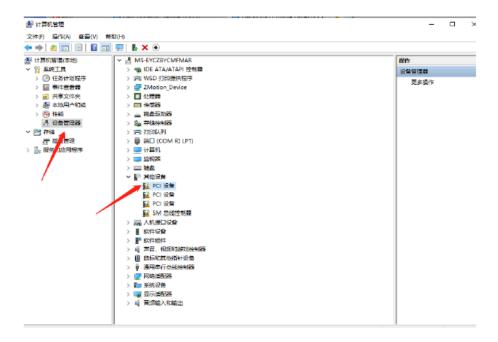
5. Select the driver directory and click OK.

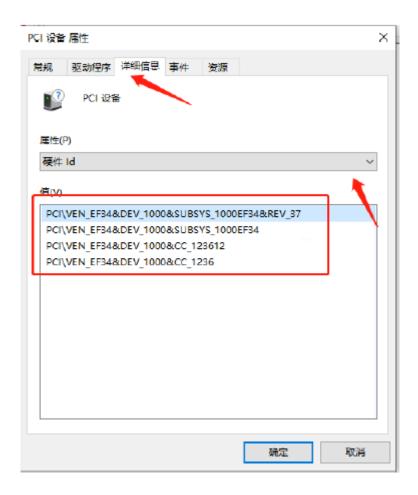

6. If there is ZMotionRT Controller in the device manager, the installation is successful.

5.4.2. Authorized Version

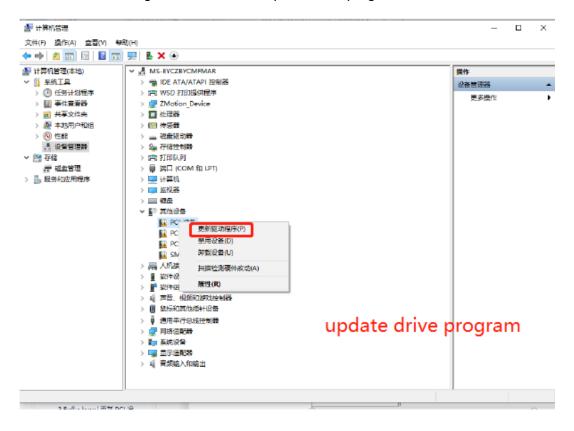
It is used with the card.

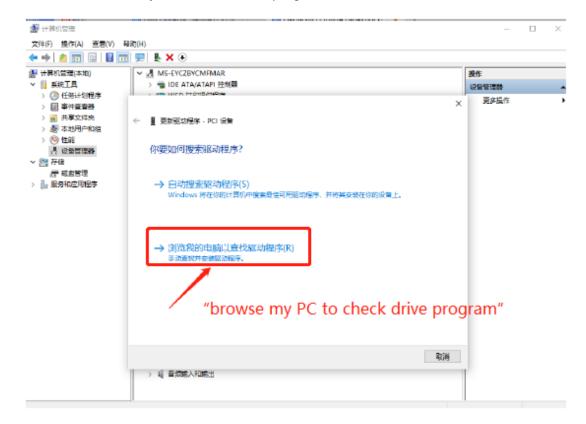
Method 1: install automatically


Use the built-in installation wizard software dpinst_amd64.exe in the driver directory to automatically install, and the specific operation is according to the software guide.

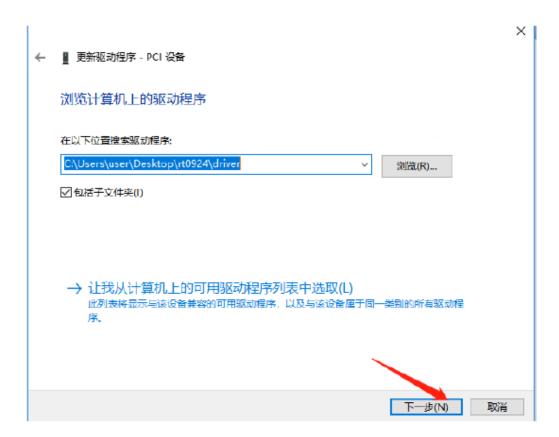

Note: If there is no PCI device, the software cannot be installed successfully, only the ZMotionRT64.sys file can be installed!!

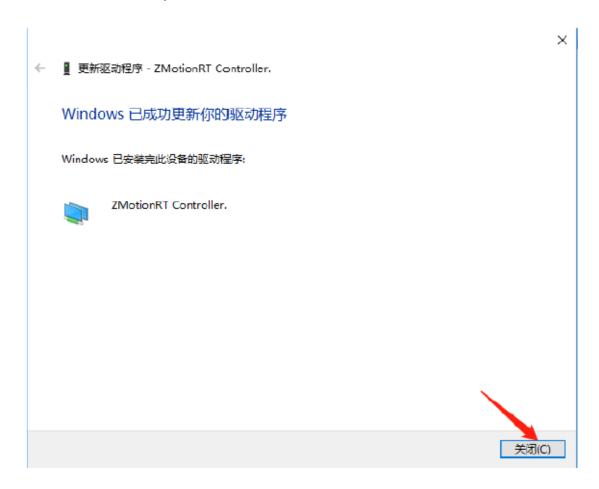
Method 2: install manually

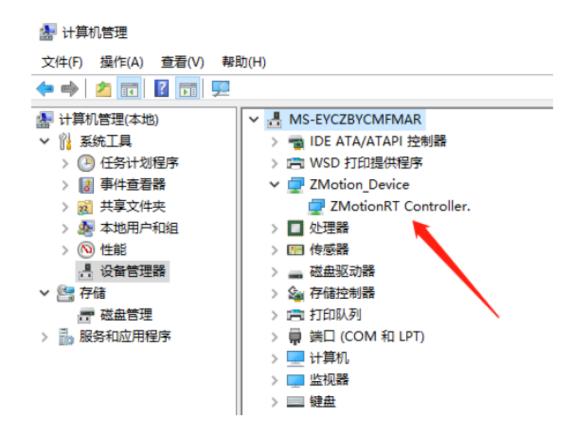

1. Open the Device Manager menu and select the PCI device in Other Devices.


2. If there are multiple PCI devices, right-click "Properties" to view detailed information, select "Hardware ID" for properties, and confirm that it is a PCI device starting with PCI\VEN_EF34&DEV_1000&.

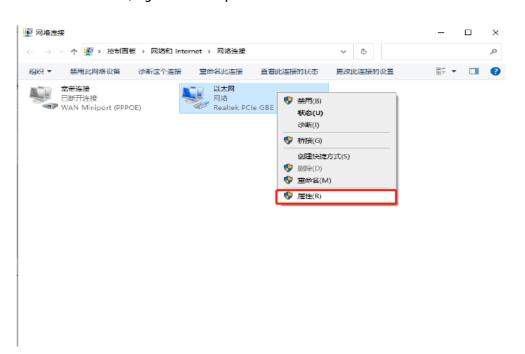
3. Find PCI Device, right-click to select "update drive program".

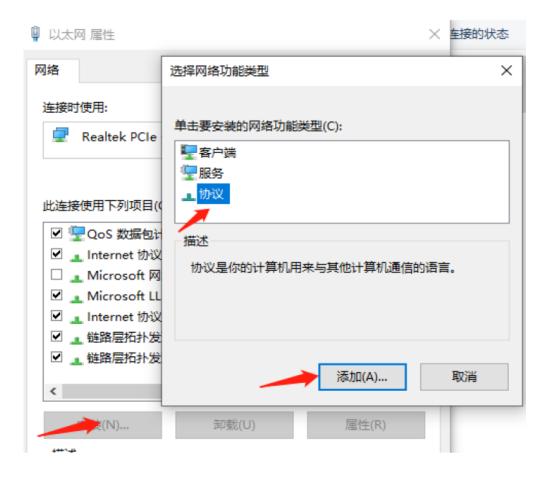

4. Select "browse my PC to check drive program".

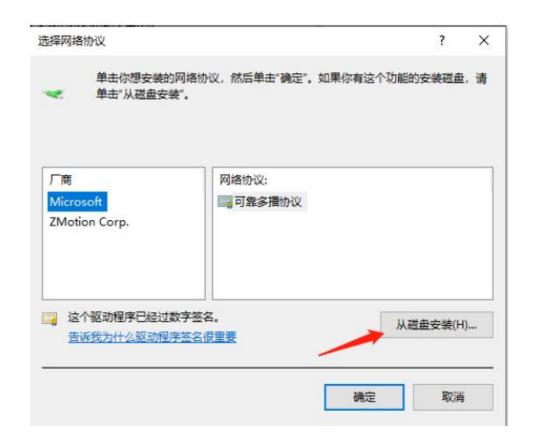

5. Click "browse", and select driver folder.


6. Click "next step".

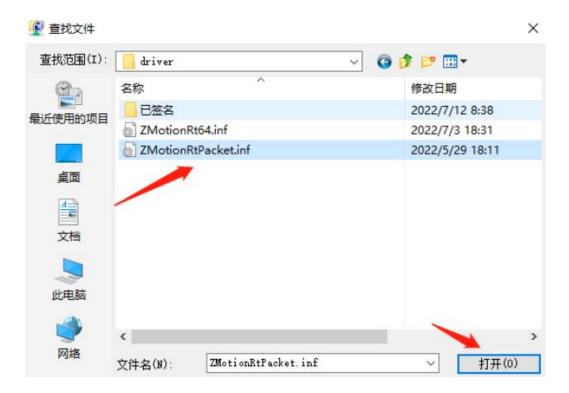
7. Wait until installed, click close.




8. If there is ZMotionRTController in the device manager, the installation is successful.

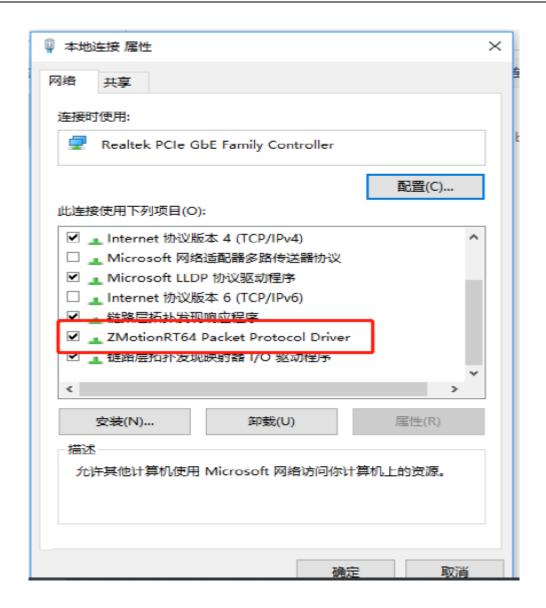

5.4.3. Ordinary Network Card Install EtherCAT Bus Protocol

1. On the Windows network connection interface, select the network port that needs to be used as the bus, right-click Properties->Installation->Protocol->Add.



2. Select "installation from disk".

3. Brower drive position, select "ZMotionRtPacket.inf".



4. Click "ok".

Note: The installation wizard software cannot install this agreement!!

If there is ZMotionRT64PacketProtocolDriver in the properties, it means the installation is successful, and you can add the corresponding network port bus protocol if you check it. The network port that does not connect to the device can be unchecked here.

5.5. Notes

- ♣ Be sure to pay attention to anti-shielding treatment during application, please use special anti-shielding wires for wiring.
- If the scan fails, try to use the cycle scan until it is successful and then turn it on. It usually occurs when the device is powered on or the first scan of the device is added or removed.
- ♣ If the scanning device is successful but the number of devices is 0, please first check whether the slot number matches, if the slot number is correct and still fails, please try stop to stop ZMotionRT7 and start ZMotionRT7 again.

- If there is strong interference on site, the bus may lose packets for a short time as the interference intensity of the equipment increases. After continuous packet loss, the motor may stop or the drive may report an error. Power off and restart to restore. The packet loss can be checked by ZTEST(60,3,0) for the dedicated port, and the interruption can be checked by ZTEST(61,1), and the non-dedicated port can be checked by the bus packet capture tool.
- To troubleshoot the failure caused by interference, you can try to stop the ZMotionRT7 without power supply and then re-run the download program. If an error occurs, it means interference. Or check whether the network port network becomes unconnected.
- Please deploy the application environment under the specified number of devices.
 Scan exceptions or other error reports may occur after exceeding the specifications.

Chapter VI Run and Maintain

6.1. Regular Inspection and Maintenance

The working environment has an impact on the device. Therefore, it is usually inspected regularly based on the inspection cycle of 6 months to 1 year. The inspection cycle of the device can be appropriately adjusted according to the surrounding environment to make it work within the specified standard environment.

Check item	Check content	Inspection standards	
		Confirm whether the power	
		distribution cabinet is powered off.	
	Whether there is	Use a vacuum cleaner to remove	
Whole machine	accumulation of garbage,	garbage or dust to avoid touching	
	dirt and dust on the surface.	the parts, if the surface dirt cannot	
		be removed, wipe it with alcohol and	
		let it dry and evaporate completely.	
	Whether the power line and	Replace cracked cables.	
Cable	connection are discolored.	replace damaged connection	
Cable	Whether the insulation layer	terminals.	
	is aged or cracked.	terrimais.	
	Whether the suction is not		
	firm or makes abnormal		
Electromagnetic	noise during the action.		
contactor	whether there is a short	Replace abnormal components.	
peripheral	circuit, water contamination,		
	expansion, or rupture of		
	peripheral devices		
	Whether the air duct and	Clean the air duct.	
Air duct vent	heat sink are blocked.	Change the fan.	
	Whether the fan is damaged.		
	Whether the control	Clean the foreign objects on the	
Control circuit	components are with poor	surface of control lines and	
23million on out	contact.	connection terminals.	
	Whether the terminal screws	Replace damaged and corroded	

are loose.	control cables.
Whether the control cables	
have insulation cracks.	

6.2. Common Problems

Problems	Suggestions		
	1. Check whether the ATYPE of the controller is correct.		
	2. Check whether hardware position limit, software		
	position limit, alarm signal work, and whether axis		
	states are normal.		
	3. Check whether motor is enabled successfully.		
	4. Confirm whether pulse amount UNITS and speed		
Mater de se pet retete	values are suitable. If there is the encoder feedback,		
Motor does not rotate.	check whether MPOS changes.		
	5. Check whether pulse mode and pulse mode of drive		
	are matched.		
	6. Check whether alarm is produced on motion		
	controller station or drive station.		
	7. Check whether the wiring is correct.		
	8. Confirm whether controller sends pulses normally.		
Controller works normally,	1. Check whether the connection between driver and		
and pulses are sent	motor is correct, and whether the wiring between		
normally, but motor	driver and controller is good contact.		
doesn't rotate.	2. Please ensure driver works normally, no warning		
doesii i fotate.	appeared.		
	1. Check whether set deceleration and speed exceed		
	the equipment limit.		
	2. Check whether output pulse frequency exceeds		
Motor can rotate, but it	driver receive limit.		
works abnormally.	3. Check whether controller and driver are grounded		
	correctly, and whether anti-interference is well done.		
	4. The current limiting resistor used in the photoelectric		
	isolation circuit of the pulse and direction signal		

	output is too large but the working surrent is too
	output is too large, but the working current is too
	small.
It can control motor, but	1. Driver parameter configuration may be incorrect,
motor appears vibration or	check driver parameters.
overshoot.	2. Set improper acceleration and deceleration time and
oversitoot.	motion speed.
	1. Check whether the limit sensor is working normally,
	and whether the "input" view can watch the signal
No signal sames to the	change of the limit sensor.
No signal comes to the	2. Check whether the mapping of the limit switch is
input.	correct.
	3. Check whether the limit sensor is connected to the
	common terminal of the controller.
	Check whether IO power is needed.
The output does not work.	2. Check whether the output number matches the ID of
	the IO board.
	1. Whether net port led is ON?
	2. Whether DC net cable is used but PC doesn't support
Fail to connect controller	automatic wiring.
to PC through net port.	3. Whether controller IP address is modified.
	4. Whether IP address of PC network card and
	controller are in the same network segment.
	Whether specified drive is installed.
	2. Is the XPCIE card inserted properly and the baffle is
XPCIE card can not be	fixed with screws?
found.	3. Is the XPCIE card inserted before the computer is
	turned on?